Food Safety Practices for HVAC and Refrigeration Systems

Gregg Galbreath – Industry Technical Consultant, HVAC Performance Services
Nalco, an Ecolab Company

Wisconsin Association for Food Protection
June 11, 2014
PURPOSE

- Define Areas of Impact
- Challenges & Root Cause
- Best Practice Solution
- Impact in Your Operation
- Questions
Critical Parameters for Food Protection in HVAC & Refrigeration

- Temperature
- Relative Humidity
- Airborne contamination
Facilities

- Food processing facilities
- Food storage & distribution facilities
- Retail facilities
AREAS IMPACTED
Food Processing

- Hanging Evaporator
- Ductwork
- Roof Top Unit
- Freezers

Wisconsin Association for Food Protection
June 11, 2014
CHALLENGES

Food Processing

- Temperature control
 - Different set point in each area
 - Process areas
 - Packaging areas
 - Warehouse areas
 - Shipping areas
CHALLENGES

Food Processing

Humidity Control
- Condensate dripping onto product
- Increases microbiological growth
- Interferes with production
 - Labeling
 - Dry product processing
 - Product mobility system
CHALLENGES

Food Processing

Airborne contamination
- Microbiological contamination
 - Ductwork
 - Facility surfaces

- Particle contamination
 - Microbiological food source
 - Heat transfer contaminant
AREAS IMPACTED

Food Storage & Distribution

- Hanging Evaporator
- Roof Top Unit
- Freezers

Wisconsin Association for Food Protection
June 11, 2014
CHALLENGES
Food Storage & Distribution

Temperature control
– Different set point in each area
– Warehouse areas
– Shipping areas
CHALLENGES

Food Storage & Distribution

Humidity Control
– Condensate dripping onto product
– Damaging cardboard boxes
– Safety from wet floors
CHALLENGES

Food Storage & Distribution

- Airborne contamination
 - Particle contamination
 - Heat transfer contaminant
AREAS IMPACTED

Retail

Freezers

Coolers
CHALLENGES

Retail

Temperature control
– Maintaining set point in each area
– Energy use increases
ROOT CAUSES

Processing, Warehousing, Distribution, Retail

- Insufficient coil maintenance program
 - Cleaning practices
 - Cleaning frequencies
ROOT CAUSES

Cleaning Practices & Frequencies:

Wisconsin Association for Food Protection
June 11, 2014
ROOT CAUSES

Cleaning Practices & Frequencies:

- Current cleaning practices are not sufficient to keep the evaporators clean

Wisconsin Association for Food Protection
June 11, 2014
ROOT CAUSES
Processing, Warehousing, Distribution, Retail

- Inadequate air filtration program
 - Filter efficiency
 - Change-out frequency
ROOT CAUSES
Processing, Warehousing, Distribution, Retail

By-pass

MERV 8 & 3 month life
ROOT CAUSES

Processing, Warehousing, Distribution, Retail

Inadequate air filtration program

- Manpower requirements

- Increased costs

Wisconsin Association for Food Protection
June 11, 2014
ROOT CAUSES

Processing, Warehousing, Distribution

▲ Deficient duct cleaning program
 – Poor cleaning process
 – Frequency
BEST PRACTICE SOLUTION

Design a program that …

– Meets the indoor environment standards
– Supports the maintenance needs of the facility
– Optimizes efficiency, saving energy
BEST PRACTICE APPROACH TO HVAC/REFRIGERATION EFFICIENCY

- Restore efficiency of coils
 - Deep clean coils with effective cleaning process
- Keep coils clean to promote safe food environment and maintain efficiency
 - Use state-of-the-art air filtration
- Measure improvement gains
 - Benchmark and manage safety and performance protocols
PROGRAM DESIGN

- Coil cleaning process
- Air filtration
- Duct cleaning program
- Monitoring improvements
DEEP CLEANING PROCESS

Recover Coil Heat Transfer Performance

COIL-FLO versus Standard Cleaning Method

COIL-FLO has a targeted, low psi water flow for deeper, thorough cleaning without damaging fins.

Standard cleaning methods often push debris further into coils, blocking airflow.

Complete Penetration

Wisconsin Association for Food Protection
June 11, 2014
FIND A CLEANING PROCESS

Fully penetrates coil & removes soils

Complete Coil Penetration—Unmatched Cleaning Results

Wisconsin Association for Food Protection
June 11, 2014
RESULTS

Wisconsin Association for Food Protection
June 11, 2014
BEST PRACTICE
FILTRATION APPROACH

Step 3: Engineer a filter solution

Step 2: Identify end user’s improvement goals

Step 1: Understand...
- Customer’s system requirements
- Mechanics of Refrigeration system
- Operation of Refrigeration system
- Performance of Refrigeration system

Wisconsin Association for Food Protection
June 11, 2014
ENERGY REDUCTION & MANPOWER UTILIZATION

Pressure Drop Across the Filter

Energy Cost

Waste 75% Reduction

Pressure Drop Curve - Inefficient Filter
Pressure Drop Curve - Efficient Filter
Savings Potential

Wisconsin Association for Food Protection
June 11, 2014
DUCT CLEANING PROGRAM

- National Air Duct Cleaning Association (NADCA) cleaning standards
 - National standard
 - Methodical process to insure proper cleaning
- NADCA certified crews
- Design program to meet your specific need
MONITORING GOALS

- Measure and document system improvements
 - Coil cleaning and efficiency improvement impact
 - Filter upgrade impact
 - Duct cleaning impact

- Manage food safety & performance life cycle with on-going monitoring

- Predict optimum time to change filters, clean coils and clean ducts to protect food process
ENERGY MONITORING

Fan Energy Reduction
AHU - AMP Draw Evaluation Variable Speed Drive

Installation of Nalco Filter Solution
COIL-FLO Cleaning

Average Payback Period 9 Months
19 kWh Saved/$ Spent

Wisconsin Association for Food Protection
June 11, 2014
BEST PRACTICE PROGRAM DELIVERS …

Food Safety
- Prevents food contamination (from evaporators & ducts)
- Prevent condensate drips onto food
- Easier control of room temperatures

Total Cost of Operation Reduction
- Energy reduction
- Material reduction
- Asset reliability and preservation
- Manpower utilization
- Waste reduction

Sustainable Savings (on-going savings)
Questions?