Why Some Cheeses are Sensitive to Food Safety Problems

WAFP Spring Food Safety Workshop
June 11th, 2014

Dean Sommer
Wisconsin Center for Dairy Research

Center for Dairy Research “Solution Based Research Backed by Experience, Passion and Tradition”
Factors Influencing Enzyme or Microbiological Activity

• Temperature/time
• pH
• Acidity (And type: acetic, lactic, propionic)
• Ionic Strength (salt and mineral content)
• a_w (water activity) and humidity
• Ability to compete in cheese environment
 – Oxygen, nutrient availability, competitiveness
• Initial numbers
Factors Influencing Enzyme and Microbiological Activity

- **Temperature**
 - More growth at higher temperature

- **pH**
 - Danger if high pH

- **Salt**
 - If high, slows ripening

- **Humidity**
 - If low, slows ripening
Factors Influencing Enzyme and Microbiological Activity: the BIG 3

Temperature and Time
• 38°F, 45°F, 50°F, 70°F

pH
• 4.4, 5.0, 5.4, 6.4, 6.7

Water Activity (aw)
• Mostly combination of salt, moisture, and acid content
Water Activity of Various Cheeses

<table>
<thead>
<tr>
<th>Cheese</th>
<th>a_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brie</td>
<td>0.980</td>
</tr>
<tr>
<td>Camembert</td>
<td>0.982</td>
</tr>
<tr>
<td>Cheddar</td>
<td>0.950</td>
</tr>
<tr>
<td>Cottage Cheese</td>
<td>0.988</td>
</tr>
<tr>
<td>Gouda</td>
<td>0.950</td>
</tr>
<tr>
<td>Gorgonzola</td>
<td>0.970</td>
</tr>
<tr>
<td>Parmesan</td>
<td>0.917</td>
</tr>
</tbody>
</table>

aw Bacteria Growth Limits

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Growth Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.96</td>
</tr>
<tr>
<td>C. botulinum</td>
<td>0.93*</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>0.91</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0.86</td>
</tr>
<tr>
<td>Yeast and Molds</td>
<td>0.65-0.70</td>
</tr>
</tbody>
</table>

*If other conditions are met, such as pH

Source: Food Research Institute, UW Madison
Classification of Cheeses by Type of Ripening

Unripened cheeses: made by coagulating milk proteins with acid

- **Acid + Rennet**
 - Fresh Mozzarella
 - Ricotta
 - Queso Blanco
 - Paneer
 - Mascarpone

- **Acid + Heat**
 - Cottage Cream
 - Neufchatel
 - Quark
 - Chevre

- **Acid Only**
 - Cheddar
 - Colby
 - Monterey Jack
 - Swiss
 - Edam/Gouda
 - Romano
 - Provolone
 - Mozzarella
 - Parmesan
 - Muenster
 - Brick

Ripened cheeses: made by coagulating with enzymes (rennet-type) and culture aids

- **Bacterial Ripened**
 - **Internal**
 - Trappist
 - Limburger
 - Liederkranz
 - Gruyere
 - Esrom
 - Comte
 - Port du Salut
 - Reblochon
 - Tilsit
 - **External**
 - Blue
 - Roquefort
 - Gorgonzola
 - Stilton
 - Danabaleu
 - Rosenbague
 - Bleu d’Auvergne
 - Blue Shropshire

- **Mold Ripened**
 - **Internal**
 - Camembert
 - Brie
 - Cambozola
 - Coulommiers
 - Saint Andre
 - **External**

Cheeses Beginning Life at a Very High pH

- Typically no starter culture added
- Cheese coagulated with rennet only
Fresh Latin American Cheeses

• Composition
 – High moisture (46%–58%) – tend to water-off
 – High pH (5.4–6.4)
 – Low or high salt (1.0%–3.0%)
 – Relatively low in fat (18%–25%)
• Commonly (but not strictly) non-melting
• No rind
• Micro issues due to high moisture and pH
Fresh Latin American Cheeses

- Para Frier
- Blanco
- Panela
- Fresco
- Ranchero
Fresh Mozzarella

• Composition
 – High moisture (65-68%) – packaged in slight brine solution
 – High pH (5.40-5.80)
 – Low salt (0.10-1.00%)
 – Relatively low in fat (17-19%)

• No rind

• Micro issues due to high moisture and pH
Ricotta

• Composition
 – High moisture (~77%)
 – High pH (~5.86)
 – Low salt (~0.50%)
 – Low fat (~8.5%)

• No rind

• Micro issues due to high moisture and pH if contaminated in package
Cheeses Beginning Life at a Low pH, but pH Rises Significantly During Ripening

• Smear Ripened Cheeses
• Blue Mold Cheeses
• White Mold Cheeses
Cheeses Beginning Life at a Low pH, but pH Rises Significantly During Ripening

Degradation of proteins (proteolysis) during ripening, which generates ammonia, neutralizes acid and raises the pH
Proteolysis

Peptides
Proteolysis: Breakdown of Casein

Connected aggregates (Farrell)

Disconnected + large peptides

Proteinase (coagulant)

Aldehydes, ketones, etc

NH₄ CO₂

Amino acids

NH₂N-C-C=O

Bacterial proteinases

Bacterial peptidases (amino peptidases)

Small peptides (bitter)
Decomposition Steps of Amino Acids During Ripening of Cheese

D. Hemme et al., Science des Aliments 2(1982)113
Consequences of Proteolysis

- Flavor
- Loss of stretch
- Increased melt and oiling-off (fat release during heating)
- Soft, pasty, smoother; shorter body in drier cheeses
- Increase in pH (release of ammonia)
Smeared Brick, Raclette, Gruyere, Limburger, and Havarti

- Cheese comes out of the brine, and is put into the smear room for 4-10 days at 60ºF and 95% RH
- Progression of Growth – surface smear
 - 1st Yeast
 - 2nd Micrococci
 - 3rd *Brevibacterium linens, Arthrobacter sp.*
Ripening Protocol for Soft Smear-Ripened Cheeses

• Put in cool room (~54ºF) overnight
 – pH ~4.9-5.4
• Brine (>18% salt) or dry salt
• Into smear room 7-10 days
 – 96-98% RH, 54-57ºF
 – Lower RH favors yeasts
 • Debaryomyces hansenii
 – Higher RH favors bacteria
 • Staphylococci, Micrococcus, Corynebacterium, Brevibacterium linens, Arthrobacter nicotianae
 – Finish with 85% RH to dry surface
 – Optional: wash off smear, then dry
• Package cheese in foil/storage 40-43ºF
• 45-55% moisture, pH surface >6.0
Smeared Brick, Raclette, Gruyere, Limburger, and Havarti

First—Yeast:

- Tolerates low pH and high salt concentration at cheese surface. Lactic acid is metabolized to H_2O and CO_2
- Cheese pH starts at 4.8-5.2, then increases to 5.5 and even higher (6.5)
- Vitamins (panothenic acid, niacin, riboflavin, biotin) are synthesized, which are essential for the growth of *Brevibacterium linens*. Yeasts are also proteolytic and stimulate micrococci
Smeared Brick, Raclette, Gruyere, Limburger, and Havarti

Second—Micrococci Growth:

- *M. freundreichi*
- *M. caseolyticus*
- *M. varians*
- Very proteolytic, also forms alcohols, volatile fatty acids
Smeared Brick, Raclette, Gruyere, Limburger, and Havarti

Third—*Brevibacterium linens*, *B. casei*, *Arthrobacter sp.*:

- Reddish orange color to smear
- Very proteolytic, but can not grow below pH 5.5
- Produces H$_2$S (hydrogen sulfide), methyl mercaptan and ammonia (NH$_3$)
- Limburger is thin and this allows for ripening to occur throughout the cheese, resulting in a cheese with a creamy or almost liquid body
- Brick – flavor compounds diffuse into the cheese from the surface, enzymes do not
Limburger Ripening Room (Chalet)
Comte Ripening Cave (France)
Limburger Cheese

1 Day 5 Days 7-10 Days
Ripening or Curing Process

- **NH₄ Moves In**
- **Proteolysis by smear and molds produces ammonia**
- **Smear-Ripened or Mold-Ripened Cheeses**
- **Ca and Lactic acid move out**
- **Lactic Acid \rightarrow CO₂ and Water**
- **Cheese pH increases from the outside to the inside (4.8 increases to >6.5)**
Mold Ripened Cheeses

• In order to ripen all the way through, mold needs oxygen to grow
• Mold spores are added to milk in blue-veined cheeses so cheeses are spiked (punctured)
• Brie and Camembert are sprayed with mold and ripen from the outside to the inside
Blue Cheese Ripening Caves
Blue Cheese Puncturing
Camembert

Traditional Camembert (mold ripened) *Penicillium candidum*

- Initially the cheese is low pH 4.8
- Body is brittle (now just the center)
- Ammonia leaches into cheese
- Causes pH to rise (6.5) and cheese becomes creamy
- Color changes from bright white to straw (whey)
Gradients in Camembert Cheese

Inner cheese mass = 8–14 mm; sub-rind = 0–6 mm and cheese rind = 1–3 mm

- (higher) Lactate concentration gradient (lower)
- (higher) Soluble Ca/PO₄ concentration gradient (lower)
- (higher) H⁺ concentration gradient (lower)
- (higher) Water gradient (lower)
- (lower) NH₄⁺ concentration gradient (higher)
- (lower) ASN and NPN concentration gradients (higher)

Cross-sectional view

Surface microflora enzymes

Lactate metabolised

Precipitation

High pH

NH₃ produced

SURFACE

Cheese surface
Proteolysis of White Mold Cheese
White Mold Cheese Ripening Rooms
“60-Day Aging Requirement Does Not Ensure Safety of Surface-Mold-Ripened Soft Cheeses Manufactured from Raw or Pasteurized Milk When \textit{Listeria monocytogenes} Is Introduced as a Post-processing Contaminant”

\textbf{Authors:} D'Amico, Dennis J.; Druart, Marc J.; Donnelly, Catherine W.
Thank You

Wisconsin Center for Dairy Research
Funded by Dairy Farmers through the Wisconsin Milk Marketing Board, Dairy Management, Inc., and the Dairy Industry

Center for Dairy Research “Solution Based Research Backed by Experience, Passion and Tradition”