Wisconsin Association for Food Protection
Spring workshop

Proper Air Handling Equipments and Standards for Food Processing Plants

Clauger - DualTemp Companies
David Mathieu
CDR, Madison (WI) – June 3rd, 2015
Summary

1. Introduction
2. Particles found in the air
3. Definition of «contaminants»
4. Air contaminants
5. Consequences of a contamination
6. Certifications for hygienic controls
7. How to minimize the risk of contamination
8. General design ideas for a good air treatment
9. Conclusion
1- Introduction

Importance of avoiding contaminations:
- To guarantee food safety
- To guarantee the quality of the products sold on the market

Multiple families of microorganisms can be found in the air:
- Bacterias
- Fungus
- Yeasts
- Viruses

Contaminants to the food industry
Contaminants to pharmaceutical industry
These microorganisms can:
- Settle on the surface of food
- Grow, multiply
- Render food unsafe to eat

It is necessary to **control the amount of microorganisms** present in the environment
2- Particles found in the air

Mineral particles

Biological particles
 = microorganisms
2- Particles found in the air

Production of particles by a person’s activity

Number of particles per minute with size > 5µm produced by a person
A contamination occurs when there is an unwanted component present in any liquid or surface inside a protected area.

The most common microorganisms responsible for contaminations and toxi-infections are: *Salmonella, Clostridium, E.Coli, Staphylococcus, Listeria, Bacillus, Molds and Yeasts*
Contaminations are caused by:

- Physical handling
- Impure product
- Dirty facilities and tools
- **Outside air** (make-up air)

Exhaust fan located besides fresh air intake

Dirty/clogged filters
- Air conditioning system
 ➔ dispatches microorganisms
 ➔ cooling coils, drip trays and ducts help contaminants to grow and multiply

Microbial gel in drip tray
4- Air contaminants

Dust on the evaporators

Molds
5- Consequences of a contamination

There are 2 types of contaminations:

- **Non-pathogen**: product loss, profit loss
 - Altering microorganisms (molds and bacterias)
 - *Pseudomonas, Bacillus, Brochothrix, lactic bacterias*

Alteration of the visual aspect
Alteration of the flavor
Reduction of the product shelf-life
5- Consequences of a contamination

- **Pathogen**: risk of toxi-infection
 - pathogenic microorganisms (bacteria)
 - *Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, Legionella*...

Diseases
Sanitary crisis
Loss of client’s trust
Marketing disaster

Bacterias on aged meat
Mucor on cheese
The regulation has changed in the USA since 2011 when President Obama signed the **FSMA** (Food Safety Modernisation Act)

IFS (International Food Standards) and **BRC** (British Retail Consortium)
Mandatory certifications to manufacture private label products

ISO 22000 certifies the management of food safety
It includes HACCP and HGP (Hygenic Good Practice) procedures

Codex Alimentarius
International Food Regulation (WHO and FAO)
It includes HACCP and Sanitary Control Plan
7- How to minimize the risk of contamination

HACCP Hazard Analysis Control Critical Point

- Constitution of a team
- Analysis of the risk
- Control of the KO points
- Determine the critical limits
- Follow the KO points
- Corrective/preventive solutions
- Verification
- Record-keeping
7- How to minimize the risk of contamination

5M of efficiency or Ishikawa method:
- Evaluate each process or problem in manufacturing
- Determine the root cause of inefficiency
7- How to minimize the risk of contamination

- Geographic location of the Food Plants:
 Food Plants must be located in areas away from:
 - odors
 - smoke
 - dust
 - flood-prone zones

Pathways and hallways must be designed to be easily washed and cleaned

- Hygenic environments / facilities
8- General design ideas for a good air treatment

- **Air Handling units**: located outside of the production area

Critical points in an air handling unit:
- Materials used (non-absorbant, resistant to chemicals)
- Good draining system (slops)
- Accessibility
- Minimum « dead zones »
- Good filtration

System designed to:
- Stop the dispersion of **bioaerosols**
- Prevent formation of **biofilms** (hard to clean)
8- General design ideas for a good air treatment

- **Air Handling units**: outside of the production area

 Cooling coils
 Condensates drip going towards evacuation pipe

 Access
 Doors or hatches for visual control and sampling
8- General design ideas for a good air treatment

- Air Handling units

The first source of contamination for people is water.

Contaminant → Legionella

Water must be analyzed at least 2 times a year.

- Cooling coils and drip trays
- Humidification systems: sprayed water or air washer
- Evaporative condensers (exterior but with interior possible cross-contamination)

Symptoms:
Fever 105 °F, fainting, nausea, vomiting, cough, headache

Complications:
Irreversible respiratory insufficiency, Acute renal failure

By inhalation

Bacteria:
- Multiply between 77-110 °F
- Survive between 32-140 °F
8- General design ideas for a good air treatment

- **Air Handling units**
 - Proper filtration

Biological particles
= microorganisms
8- General design ideas for a good air treatment

- **Air Handling units**
 - Filters
 - **ASHRAE**
 - **Gravi**: weight of dust being stopped
 - **Opa**: surface fouling → colorimetry
 - **DOP**: MPPS efficiency → number of particles

<table>
<thead>
<tr>
<th>MERV</th>
<th>0.1 - 0.3 microns</th>
<th>0.5 - 1 microns</th>
<th>1 - 2 microns</th>
<th>2 - 5 microns</th>
<th>>5 microns</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 85% gravi</td>
<td>2%</td>
<td>9%</td>
<td>15%</td>
<td>30%</td>
<td>80%</td>
</tr>
<tr>
<td>8 - 90% gravi</td>
<td>2%</td>
<td>10%</td>
<td>20%</td>
<td>65%</td>
<td>92%</td>
</tr>
<tr>
<td>10 - 60% opa</td>
<td>25%</td>
<td>35%</td>
<td>53%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>13 - 85% opa</td>
<td>60%</td>
<td>78%</td>
<td>92%</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>14 - 95% opa</td>
<td>80%</td>
<td>92%</td>
<td>95%</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>H10 - 95% DOP</td>
<td>95%</td>
<td>98%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>17 - 99.97% DOP</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

MPPS: Most Penetrating Particle Size
8- General design ideas for a good air treatment

- **Air Handling units**
 - **Filters**: pleated, pockets, washable, disposable, rolls, dihedron, metal frame, wood, paper...

- **NOTE**: temperature < 160°F
 + keep dry to preserve characteristics
8- General design ideas for a good air treatment

- **Air coolers**: inside the production area (evaporators)

Critical points for an air cooler:
- Materials used (non-absorbant, resistant to chemicals)
- Good draining system (slops)
- Accessibility
- Minimum of « dead zones »

- Stainless steel 304L or 316L

 Resistant to aggressive ambiance and detergent
8- General design ideas for a good air treatment

- **Air coolers**: inside the production area

 Impossible to clean → accessibility
 Not resistant to chemicals → compatibility
8- General design ideas for a good air treatment

- **Air coolers**: inside the production area
 - Use of stainless steel
 - Coil designed to minimize the risk of contamination
 - CIP or foam gun cleaning (inside & outside)
 - Drip tray flips down or slides out for cleaning (molds & bacterial gel)
 - Motor and propeller accessible for cleaning
8- General design ideas for a good air treatment

- **Air distribution and diffusion**

 Minimize the use of galvanized ducts:
 - Almost impossible to clean
 - Bacteria nests
 - Contaminant

 Use textile ducts:
 - Light
 - Easy to remove
 - Easy to wash
8- General design ideas for a good air treatment

- **Airflow management**
 - Management of pressure cascades for environments that require dust control
 - Thermal balancing (transfer of heat / humidity)
 - Balancing of the airflows at the plant’s scale

The higher the required hygienic level

→ The higher the pressure of the area
Airflow management

To avoid a contamination
Respect a principle:

➔ MOVING FORWARD
8- General design ideas for a good air treatment

- **Airflow management**

 Volume of fresh air > exhaust

 Make-up air handling unit

- Small fresh air units with HEPA filtration for overpressure control
Control of contamination = addition of several factors

THE AIR TREATMENT IS ONE OF THE FACTORS

We estimate that 90% of contaminations are airborne

Controlling air contamination is complex but necessary:
- Air / compressed air
- Water / soft water
- Equipments
- Ducts
- Airflow management
THANK YOU

David Mathieu